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ABSTRACT 

Structural design data are presented for various applied load and thermal 
gradient conditions for flat rectangular sandwich panels and sandwich cylinders. 
The flat panel solutions pertain to instability under nonuniform stress, and also to 
the stresses and displacements resulting from normal pressures and temperature 
gradients across the panel thickness in the presence of uniform midplane com- 
pression. 

Sandwich cylinder design data are given for buckling under nonuniform circum- 
ferential and axial stress, respectively, and for stresses due to radial or axial 
temperature gradients.  The range of stiffness parameters extend, at one limit, to 
the Isotropie forms of construction. 

PUBLICATION REVIEW 

This report lias been reviewed and is approved. 

W.A. SLOAN, JI 
Colonel, USAF 
Chief, Structures Division 
AF Flight Dynamics Laboratory 
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CHAPTER I 

INTRODUCTION 

The development of thermal stress determination techniques for supersonic 
transport aircraft structures has consisted of a threefold effort.   First, a survey of 
the literature pertinent to thermal stress analysis was performed, resulting in pub- 
lication of an annotated bibliography of the subject for the period 1955-1962 (Reference 
1); a bibliography covering thermal stress analysis literature prior to 1955 had been 
published elsewhere.   The second portion of this study effort has been concerned with 
the development of graphical design data for various applied load and thermal gradient 
conditions for flat rectangular sandwich panels and sandwich cylinders.   This work is 
presented in the subject report.   Finally, computer programs for the more complex 
problems encountered in beam, plate, and cylindrical constructions were coded with 
the purpose of making them available to eligible recipients in the airframe industry. 
A description of these programs is given in Reference 2. 

Sandwich panels and cylinders provide attractive constructional forms for 
large high-performance vehicles and will undoubtedly be given consideration during 
the developmental phase of the SST airframe.  They are extremely efficient from a 
weight standpoint and can be fabricated using materials suitable for an elevated 
temperature environment exceeding 1000° F. Sufficient data have been accumulated to 
permit their design for conventional loadings and uniform temperature conditions 
(c.f.. Reference 3) but design data is lacking for nonuniform temperature conditions. 
It is the intent of this report to provide such data.  In addition, it is to be noted that 
the design curves to be presented extend, in one limit, to the conventional Isotropie 
thin plate and cylinder constructions. 

The design curves are presented in the chapters of this report with a dis- 
cussion of their basis, use, and limitations and with illustrative examples, but without 
a detailed description of the related formulations and solution techniques.   The latter 
are given in a series of Appendixes. 

Solutions to flat sandwich panel problems are found in Chapters II and III.   One 
of the most important problems in flat plate analysis is the prediction of elastic 
instability in the presence of nonuniform stress produced by  temperature gradients. 
Hoff(^), Klosner and Forray ^', and van derNeut ^\ among others, have presented 
procedures and isolated results for this problem as it pertains to thin Isotropie plates; 
there are no known solutions for sandwich construction.   In Chapter II of this report, 
curves are presented which allow the prediction of the elastic instability conditions 
for long honeycomb sandwich panels with equal thickness Isotropie skins under non- 
uniform longitudinal stress, for both fixed \nd simply supported longitudinal edges. 

Manuscript released by authors in July, 1963 for publication as an ASD 
Technical Documentary Report. 
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Chapter III is concerned with the stresses and displacements at the center of 
simply-supported rectangular sandwich panels subjected to temperature gradients 
through the panel thickness and to pressure loadings.   The presence of fixed uniaxial 
midplane forces is also taken into account.  The graphs cover a wide range of aspect 
ratios, stiffnesses, and midplane loadings.  A limited number of results for conditions 
of fixed support along two edges is also presented.   Techniques for solving this type 
of problem have been published by Bijlaard (7) and Ebcioglu (8).   Reference 7 con- 
siders only the problem of temperature gradients and in neither Reference 7 nor in 
Reference 8 are design curves presented.  The formulation of the governing dif- 
ferential equations for this problem, as described in Appendix B, has not been 
formally presented elsewhere. 

Chapters IV through VII deal with various problems in the analysis of heated 
sandwich cylinders.   Curves for the prediction of the elastic instability of sandwich 
cylinders subjected to circumferentially varying axial stress are found in Chapter 
IV.   Conditions which produce this type of stress distribution include both nonuniform 
circumferential temperature gradients and also combinations of bending and axial 
compression.   Graphical means of determining the stresses due to temperature for 
this problem have not been considered since the applicable procedures involve the 
use of either thermoelastic beam theory or the discrete element techniques of 
matrix structural analysis.  In neither case are graphical solutions feasible. 

Published references have not as yet considered the above-cited instability 
problem.   Bijlaard and Gallagher ( 9) anci ^bir and Nardo '^  studied the case of 
the Isotropie cylinder under circumferentially varying axial stress.   Both references 
concluded that the small deflection theory maximum stress amplitude for elastic 
instability under varying stress is effectively equal to that for uniform compression. 
This conclusion is found to be essentially correct in the present case of sandwich 
cylinders.   Comparisons are made with the results of past studies of the stability 
of sandwich cylinders under uniform compression (References 11-13). 

Chapters V and VI treat the stress and instability analysis of heated cylinders 
supported by unheated rigid bulkheads.   Fixed and simple support conditions are  in- 
cluded.  Graphical methods for determining the maximum stresses under such 
conditions appear in Chapter V.   This class of problem, for Isotropie cvlinders has 
been previously dealt with by Hofr    ', Przemieniecki '   ', and Johns ^   '.   Based on 
the results of Chapter V, a series of elastic instability analyses were performed and 
from these latter results a set of graohical representations of the data were drawn. 
These appear in Chapter VI.   Results for the limiting case of the Isotropie cylinder 
are compared with solutions given by Hoff ("), Johns (•'•') and Anderson ^K 

The final design data given in this report pertain to the stresses in a sandwich 
cylinder due to radial temperature gradients.   Means for computing the stresses due 
to either intei'nal or external pressure are also presented.   A similar problem, but 
with different core properties, was treated by Yao ^19).  Yao proposes a numerical 
approach to analysis, based on a method of successive approximations.   The radial 
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temperature gradient problem is limited to stress solutions since considerations of 
general instability are involved. 

As noted earlier, all theoretical questions associated with the computation of 
the data employed in construction of the graphical representations are examined in 
detail in a series of Appendixes (Appendixes A through E). 
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CHAPTER II 

BUCKLING OF SANDWICH PANELS UNDER NONUNIFORM STRESS 

This chapter presents graphical representations with which the elastic 
instability conditions for honeycomb sandwich panels with equal thickness isotropic 
skins under nonuniform longitudinal stress can be predicted.  The panels are 
assumed to be "long" (i.e., aspect ratio effects and the significance of the trans- 
verse support conditions are excluded) and clamped or simply supported along 
their longitudinal edges.   The conditions of analysis are illustrated in the insert 
in Figure II-l. 

A detailed treatment of the formulations and procedures employed in the 
derivation of the presented curves is given in Appendix A.   The governing 
differential equation is that which was derived by Reissner in Reference 20; the 
method employed for its solution was the finite difference approximation technique. 
A special purpose computational program was coded and utilized in the development 
of the required data. 

It is shown, in Appendix A, that the critical stress is a function of two para- 
meters, a stiffness parameter (D ) and a parameter defining the stress distribution. 
The stiffness parameter is given as 

,2  D 

' Ds 

where b is the panel width and D   and D   are the core shear stiffness and the panel 
bending stiffness, respectively.    The analyst has at his disposal the choice of a, 
number of formulas for DC( and Ds, dependent upon the details of sandwich panel 
construction; these choices are developed and discussed in Reference 3, Section 3.1. 
The simplest and most appropriate formulas for these parameters are 

Dq    ( h . t) Gc (11-2) 

2 
Et (h+t) 

Ds - 1(1^) (""S) 

where h is the core depth. G   is the core modulus of rigidity, t is the thickness of 
one of the panel faces, and L and// are the modulus of elasticity and Poisson's 
ratio of the face material, respectively.   These designations of geometry, stiffness, 
material properties, etc. are applicable to all chapters of this report. 

In the strictest sense, the stiffness paratmeter Dp can range from nearly 
zero to infinity.  At infinity 'he case of the isotropic plate with infinite shear stiff- 
ness prevails.   This conditi ^n is nearly achieved at much lower values and it is 
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satisfactory to consider the maximum D   to equal 10 .  At the lower range of D» it 
is found that an entirely different mode of instability, wrinkling, is encountered. 
This mode is characterized by a zero wavelength buckling condition due to an initial 
assumption that the individual bending stiffnesses of the faces could be neglected.   It 
is not the intention of the present analysis to deal with wrinkling.   The curves have 
consequently been terminated at       x      =   1, which is a limit imposed by wrinkling 

associated with shear instability failure of the core.  Thus, evaluations of the 
critical stress were performed for a range of D values from 10^ down to values 
where this shear instability limit appeared. 

Only the simplest forms of stress distribution are of general interest and 
therefore suitable for inclusion in design charts.  The results presented herein were 
developed for linear and trigonometric-shaped sti'ess distributions.   Linear or nearly 
linear distributions exist on panels in wings sustaining overall nonuniform chordwise 
temperature gradients and also when the bending stress distribution on a wing cross- 
section departs from the uniformity predicted by elementary theory (as is generally 
the case).   Trigonometric-shaped stress distributions are good approximations to 
conditions where the panel longitudinal edge members (e.g.. the spar caps) provide 
significant heat sinks, thereby resulting in extreme, local, transverse variations of 
the longitudinal thermal stress. Similar comments as to applicability could be made 
for both types of stress distribution for fuselage skin panels. 

A linear variation of stress which is equivalent to a uniformly distributed load 
superimposed upon a bending moment is conveniently described by the ratio (S) of the 
stress levels at either side of the panel.  Using the convention that the denominator 
is always the larger positive (compressive) value, any purely compressive load is 
covered by the range 1 - S - 0.   This range has been extended into the mixed 
compressive-tensile region to the value S = -1.0, i.e. pure bending. 
This range of S from ^1.0 to -1.0 has been covered in intervals of 0.25.  The 
selected trigonometric cases are simply sin y, sin 2y, cos y, cos 2y. 

Figures II-l to II-4 present the results in graphical form.   Figures II-l and 
II-2 are for the simply supported case while Figures 11-3 and 11-4 relate to fixed 
support of the longitudinal edges.   It was intended to depict in Figure II-l the results 
from Reference 3 for uniform compression (S = 1.0), but due to the excellent level of 
agreement it is not possible to differentiate between those results and the present 
solutions for S = 1.0.  The curves are terminated at the lower end by the 
wrinkling boundary discussed previously. 

Figure II-5 depicts the variation of buckling stress for the Isotropie plate sub- 
ject to linear stress distributions for each boundary condition.   These curves have 
been obtained by considering large values of Dp. Here, the form of theabcissa has 
been altered slightly to eliminate the shear stiffness of the core (D ).  The new 
abcissa is thus taken as  M T cr bg t where tj    2t is the thickness of the Isotropie 
plate. D

s 
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Illustrative Examples 

Example (1) Sandwich Plate with simply supported edges 

Width of panel = 40 in. 
Core Thickness = 0.50 in. 
Modulus of faces - 107 lb/in? 
Face Thickness = 0.036 in. 
Shear Modulus of Core = 2 x 104 lb/in.2 

The panel is subjected lo a triangular compressivc load (S = 0).   Utilizing the 
above data and formulas 3.12E and 3.13B from Reference 3, one obtains Ds = 5.68 x 

104 and D   = 1.0 x 104,   From this paper, D   =   g     = 282.   From figure II-l, for 
D

S 

2t S = 0 at D   = 282, the buckling load parameter-iy— <T     is found to be 0.257.  Hence, 

0.257 D q 

O"    =  —-C1   = 35700 lb/in 
cr 2t 

Total applied load = 2t cr     - = 51400 lb. 
c r 2 

Example (2) Isotropie Plate with simply supported edges 

Width of panel = 40 in. 
Modulus of panel 107 lb/in? 
Thickness 0.388 in. 

Thus I) -- 5.343 x 104 

s 

This panel is also subjected to a triangular compression (S = 0).   From Figure 
lib2 

II-5 at S = 0, —-    cr    = 77.05 
Ds       cr 

77.05 D ,     2 
Thus   a    -  s      = 6625 lb/in. 

Cr"    l.b2 
i 

Here again total applied load = lj     ^c?^ - 51400 lb.   Thusr the two panels 

carry the same loading but, as can be seen, the sandwich panel has a considerable 
advantage over the Isotropie plate on a weight basis. 

The few published solutions for buck'ing of long panels under nonuniform load- 
ing are entirely restricted to the case of Isotropie plates.   Timoshenko (21) has 
considered an Isotropie plate with a linearly varying stress.   The parameter used 
by Timoshenko is the factor k in the expression. 

,.   Tr2Ds 0 = i\ 
cr 2 

b I 
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Using this parameter the following comparison is obtained 

s k 

Timoshenko Present Report 

+ 1.0 
0 

-0.5 
-1.0 

4.00 
7.81 

13.40 
23.90 

3.98 
7.79 

13.35 
23.63           | 

(4) 
Hoff      has considered a trigonometric distribution of load, corresponding to the 
cos 2y case of the present paper.  The value obtained by Hoff, k = 7.67, shows good 
agreement with the present work where k = 7.68. 
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Figure II-l.  Buckling Load of a Long Sandwich Panel Subjected to Linearly 
Varying Edge Stress (Long Edges Simply Supported) 
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CHAPTER III 

PROCEDURE FOR DETERMINING THE STRESSES AND 
DISPLACEMENTS FOR A RECTANGULAR SANDWICH PANEL 

Design curves are presented in this chapter which permit the determination of 
the central deflection and maximum bending moments in a rectangular sandwich 
plate subjected to a uniform normal pressure and uniform temperature gradient 
through its thickness combined with an anaxial in-plane compression Nx,  All edges 
of the panel are simply supported.  In addition a limited number of curves is 
presented for the case of two opposing edges fully built-in and two edges simply 
supported.  The sandwich panel consists of two Isotropie faces of equal thickness 
t(Fig. III-l) and a core of thickness h.   The core has the usual properties of zero 
in-plane stiffness and uniform transverse shear stiffnesses with a shear modulus 

The type of loading combination considered here, consisting of mechanical 
and thermal loading, can occur, for example, in a wing panel of a high speed air- 
craft subjected to kinetic heating effects and cooled by the presence of fuel stored 
in integral tanks.  The values of the mechanical and thermal loadings are assumed 
to have been determined from a general structural analysis. 

The governing small deflection theory differential equations for a sandwich 
panel subjected to thermal as well as mechanical loading have been presented by 
BijlaardCO and Ebcioglu(8) but in neither paper design curves are presented.  In 
Reference 22 a new formulation of the differential equations is developed and the 
equations are solved for a number of boundary conditions.  An outline of the method 
of solution is given in Appendix B.  The solution which involves the use of infinite 
Fourier series has been programmed in FORTRAN for evaluation on an IBM 7090 
computer. 

As in Chapter II the stiffness of the sandwich panel is described by 
single parameter 9 

D        b D 
D' =-£. = 1 

P     rr2     Tr2D 
s 

In addition, however, since panels of finite proportions are now being considered, 
the aspect ratio 

must also be introduced.  Although both Dp   and A may both vary over very large 
ranges theoretically .practical considerations provide limitations, so that only 
values of D ' between 1 and 100 and A between 0.4 and 2.5 have been considered. 

15 
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Since there are three independent parameters, stiffness, aspect ratio and mid-plane 
loading, it is not possible to present all variations simultaneously on one graph. 
Thus Figures III-l to ni-4 present the variation of the maximum deflection per 
unit temperature gradient for four values of the mid-plane loading with all edges 
simply supported.  Similarly Figures III-5 to HI-8 show curves of the maximum 
deflection per unit normal pressure for the same four mid-plane loadings with all 
edges simply supported.   Figures III-9 to III-16 depict the central bending moments 
per unit temperature difference or unit pressure for the four mid-plane loadings 
with all edges simply supported. 

In Figures 111-17 and 111-18 the central deflections per unit temperature 
gradient and per unit normal pressure are plotted against the mid-plane loading for 
a panel having a stiffness Dp' = 100  (i.e. an equivalent Isotropie plate).   For values 
of the aspect ratio up to unity the buckled shape of such a plate consists of a single 
half-wave in each direction and thus buckling is represented by the maximum de- 
flection increasing smoothly to infinity.  On the other hand, for a/b 2 1.5 the buckled 
shape has two or more half waves in the longitudinal direction and therefore does 
not conform to the deflection form generated by the thermal or normal loading. The 
curves for a/b = 1.5, 2.0 and 2.5 have been terminated at the true values of the 
critical stress as given by Timoshenko for an Isotropie plate.  At these values the 
buckling will be characterized by a sudden change in deflected shape of the panel. 
Similar curves may be generated by suitable cross plotting for other values of D '. 

Figures 111-19 to 111-22 show central deflections and bending moments similar 
to Figures III-l, III-5, III-9 and 111-13, but with two opposing edges fully built-in 
and two edges simply supported.   The bending moments at the center of the built-in 
edge are given in Figure 111-23. 

Illustrative Examples 

(1)   A rectangular sandwich panel 20 in, by 30 in, is simply supported along 
each of its edges and is subjected to a uniform normal pressure of 1 psi.   The 
dimensions of the sandwich are as follows: 

Core thickness = 0.50 in. E   = 10.5 x 106 psi 
Face thickness = 0.020 in.        Gc = 6.65 x 104 psi 

Using the above data D   = 3.15 x 104 and D ' = 44.5,  By interpolation on Figure III- 
5 for DJ = 44,5 and  AS= 1,5 

P 

4 
w           IT D,, 

max ° 

pb4 

0,77 

Hence maximum deflection w        = 0.0401 in. 
max 

IG 
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In Reference 23 a sandwich having the above dimensions has been sub- 
jected to normal pressure. The maximum deflection measured on this specimen 
was 0.0384 in., compared with a predicted maximum deflection, using the theory 
of Reference 23, of 0.0446 in. 

(2)   A rectangular sandwich panel 24 in, by 36 in, is simply supported along 
each edge and is subjected to a uniaxial compression of 1500 lb/in.   The panel also 
carries a normal pressure of 10 psi acting downwards.  The lower face is heated so 
that there is a constant temperature difference of 200 0F between the lower and 
upper faces.  It is required to find the maximum deflection at the center of the panel 
and also the maximum bending moments. 

Core thickness = 0.97 in. E   ■=     10.5 x 106 psi 
Face thickness = 0.03 in. G    =    3 x 10^ psi 

ot   =     1,2 x 10-5/ 0
F 

Using the above dimensions Ds = 1.73 x lO^Dq = 3 x 104, A = 1.5 
N x 

Thus D ' = 10,0 and   v   =—   = -0.05 
P 'x    Dq 

From Figure III-2 for these values of Dp' and 

-rr   K w 77    h max 
       = 1.135 

b2 (1+ /i. ) T 

w = 0.2067 in. (downwards) maxm T 

From Figure III-6 

w  n      7r4D 
maXp        -i    =0.97 

Pb4 

w =0.1910 (downwards) maxp 

Total maximum deflection = 0.2067 + 0.1910 = 0,3977 in. 

In a similar fashion using Figures 111-10 and III-14 the maximum bending 
moments are found to be 

Mx    MXp • Mxt = 294.14 - 250,45 = 43,69 lb, in. 

M    ; Myp t M . = 535,75 - 16.19 = 519.56 lb. in. 

17 
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These bending moments yield direct stresses in the facings crx = ±1262 psi and 
a   = ±15015 psi.  In addition the compressive load N   causes a compressive stress 

or  = 25000 psi 
x 

i.e.   a total = 26262 psi. 
x 

18 
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CHAPTER IV 

SANDWICH CYLINDER INSTABILITY UNDER CIRCUMFERENTIALLY 
VARYING AXIAL STRESS 

This chapter is concerned with the prediction of the elastic instability of an 
axially loaded sandwich cylinder of mean radius r and core thickness h, with 
Isotropie faces of equal thickness t (Figure IV-1).   The faces possess only inplane 
stiffness and have a modulus of elasticity E, while the core possesses only a 
transverse shear stiffness with a modulus of rigidity Gc.  The axial load per unit 
circumferential length, Nx, varies in the circumferential (y) direction and at any 
point the stress in each of the two faces is assumed equal at a value   av =   ^x 

X      2t 

Conditions of circumferentially varying stress, as shown here, may result 
from the combination of an applied axial load and bending moment, or as a result 
of temperatures which vary around the circumference at the cylinder.  Trans- 
formation of the applied loads or temperature profile into the required stress 
distribution is assumed to have been accomplished by the user of the present data 
by means of the appropriate stress analysis technique. 

The problem of the elastic instability of an isotropic thin-walled cylinder 
has been solved in References 9 and 10 on the basis of small deflection theory. 
Both references concluded that instability is reached when the maximum axial 
stress has the value 

a     » 0.6 Et 
er — (IV-1) 

regardless of the nature of the circumferential variation of o"x.   (The compression 
zone within which the maximum value   crcr occurs must at least extend over the 
wavelength of a circumferential buckle, however), "t is the wall thickness of the 
isotropic shell.  The result of Equation IV-1 is,of course, the small deflection 
theory solution for uniform compression.   In view of these results it would appear 
reasonable to expect that for the case of a sandwich cylinder the same conclusions 
would prevail, i.e., the instability stress is given by the solution for uniform axial 
compression, regardless of how nonuniformly the stress might vary. 

Small deflection theory solutions for the instability at sandwich cylinders 
under uniform axial compression, based on infinite series techniques, have been 
presented in references 11, 12 and 13.   These results are useful for comparison 
purposes but to develop solutions for nonuniform stress it has been found more 
convenient to extend the finite difference technique used in Reference 9 to the 
present case.  Details of this extension are given in Appendix C. 
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Based on the theory described in Appendix C a computer program for the 
prediction of critical stress under the subject conditions was coded and employed 
in the development of parametric results.   For sandwich cylinders, two stiffness 
parameters must be considered: 

_      BY 
Dc-_q_ (IV-2) 

D 
s 

and(-—^.  The chosen values of Dc range from 66.7 to 2500, while —— ranges from 
Cjcr Gcr 

0 to approximately 0.95. The upper limits of both parameters are governed by a 
wrinkling failure characterized by a shear instability of the core.  As in Chapter II, 
this instability is governed by the condition 

2   ^ 

(h+t)Gc 
(IV-3) 

The specific load conditions studied are those which produce a linear variation 
of stress, described by the ratio (S) of the crown stress ( crx ) to the stress at the 
bottom of the cylinder (   cr   ), i.e., 

S -    g"Xc (IV-4) 

Results were obtained for S = 1.0, 0.5, 0, -0.5 and -1.0 for various combinations, of 
the two governing parameters. 

Selected results are presented in Table IV-1.  As anticipated the critical 
stresses for nonuniform stress states are effectively equal to the critical stress 
for uniform axial compression (S = 1.0).   The negligible differences between the 
results for a given stiffness condition may be the result of the differences in stress 
distribution, but it is also possible that the discrepancies are due entirely to numerical 
error. This question cannot be resolved by use of the method adopted for solution of 
the problem. 

Results are plotted in Figures IV-1 through IV-3.   Figure IV-1 is a carpet 
plot wherein both stiffness parameters play a role in the definition of the critical 
stress.   If a conventional plotting procedure and slightly altered scales are adoped, 
as in Figure IV-2, the parameter Dc loses its significance and all results can be 
approximated by a single line.   This manner of representation was also adopted in 
References 11, 12, and 13.   The curve presented in Figure IV-2, based on an 
Equation from Reference 13, is given by 

E(h+t) 

cr 
El 

1.05 
1.8 rGc 

(IV-5) 
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TABLE IV-1 

BUCKLING COEFFICIENTS - SANDWICH CYLINDER 
UNDER NONUNIFORM AXIAL COMPRESSION 

Stiffness 
Parameters 

2t 
Critical Stress Parameter - 

^cr                                       1 
       (computed) 

q 

c 
Et/G r 

c 
S = -1.0 S = -0.5 S = 0 S = 0,5 S = 1,0* 

1000 13.49 0.2672 0.2669 0.2665 0.2660 0,2630 

200 30.17 0.5536 0.5511 0.5476 0.5433 0.5345 

66.7 45.24 0.7699 0.7630 0.7555 0.7450 0.7243 

* Uniform axial compression 
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The present results, as shown by individual points on Figure IV-2 are in very good 
agreement with the above curve. 

For the Isotropie cylinder, results obtained from small deflection theory 
analyses are grossly in error except when a sufficiently high internal pressurization 
is applied, the attainable critical stress being extremely sensitive to initial 
imperfections (e.g., out of roundness, etc).  It is therefore to be expected that sand- 
wich cylinder critical stresses will be in closer agreement with small deflection 
theory predictions since the initial imperfection effects, which are a function of the 
radial imperfection magnitude-to-total wall thickness ratio, will be very small in 
carefully fabricated sandwich cylinder. 

Experimental results presented by Cunningham and Jacobs on (Reference 24) 
lend credence to the above hypothesis.   On the other hand the test data of Norris and 
Kuenzi (Reference 25) support the view that large-deflection formulations must be 
used for the development of design data.  A design curve from Reference 26, based 
on large deflection theory, is reproduced in Figure IV-2.  Note the large differences 
between the predictions based on large and small deflection theory.  Unquestionably, 
a rational basis for the design of sandwich cylinders requires a   correlation and 
critical evaluation of existing test data, with the performance of additional tests in 
regions of the governing parameterMp—) which have not yet been examined.   This 

work should be implemented by a theoretical study which treats instability under 
nonuniform stress on the basis of large deflection theory. A study of this type is 
beyond the scope of the present effort. 

As a final representation, the variation of the wavelength of the buckle in the 
axial direction is plotted parametrically in Figure IV-3. As in the case of the 
eigen values, the computed wavelengths were found to be essentially independent, of 
the shape of the stress distribution.   The wavelength to radius   ratios are relatively 
small; thus, the present results should apply to short as well as to long cylinders. 
It should be noted that these computed wavelengths are in close agreement with 
results presented elsewhere (Reference 12). 

Illustrative examples 

(1)   "Rigid core" 

Determine the maximum stress for buckling (   o"cr) for an axially loaded 
sandwich cylinder possessing the following properties: 

Radius (r) : 18 in. 
Core Depth (h) : 0.125 in. 
Face Thickness (t): 0.010 in. 
Moduli E = 10.5 x 106 psi 

Gc = 40,000 psi 
/i  - 1/3 
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9 0 
Thus, Dc = 5V_ =  2(l-/i2) G^     = 1660 

Ds Et (h+t) 

Et   =0.146 
G  r 

c 

From Figure IV-1:  k = 0,96 

_        .  „   (h+t)       0.96 x 10.5 xl06x 0.135      _. ,..     . 
Hence        cr    = k E  -—- =  ^ = 75,500 psi 

er r 18 

If the material in question is 7075-T6 aluminum, as was the case for 
uniformly compressed cylinders of the same proportions tested by Eakin (Reference 
27) and discussed by Cunningham and Jacobson, this stress is well into the inelastic 
range.   By using the dotted curve of Figure IV-2 and the appropriate plasticity 
reduction factor, Cunningham and Jacobson found a small-deflection theory critical 
stress of 57,000 psi.   The test specimen failed at 61,000 psi. 

(2)   "Soft Core" 

Assume all of the above properties and proportions remain the same 
except that the core now has a shear modulus Gc = 1450 psi and h = 0.1420 in. 
The parameter Et/Gcr will then be equal to the value prevailing for tests described 
in Reference 12.  Thus, 

Et       10.5 x 106 x 0.0100     , nn — = 4.02 
Gcr 1450 x 18 

From Figure IV-2, it is seen that failure is governed by wrinkling associated with 
shear instability of the core.   Hence 

(h+t)Gc 
0cr=—       =10,300   psi 

This compares with a stress, computed from experimental data,of 11,300 psi. 
(Specimen 1424A, Reference 12). 
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CHAPTER V 

THERMAL STRESSES AND BENDING MOMENTS IN A HEATED SANDWICH 
CYLINDER SUPPORTED BY RIGID BULKHEADS 

This chapter presents data for the determination of the thermal stresses and 
displacements in a sandwich cylinder of length 2c supported at each end and sub- 
jected to a temperature change ( A T)from the stress-free state.  The,cross-sec- 
tional properties and the material property characteristics are identical to those of 
the sandwich cylinder of the preceding chapter    (see Figure V-l),   Both fixed and 
simple support conditions are treated.   The fixed support condition applies to a 
cylinder continuous over many supports, where, due to symmetry, each bay is 
effectively built-in at the bulkheads. 

A detailed development of the pertinent formulations is presented in Appendix 
D.   There, it is shown that the problem is similar to that of a beam on an elastic 
foundation.   The radial displacements (w) for the simple support condition are found 
to be 

ra   A   T 
w 

(m^-m^) 

2 ni  cosh mill,.        ,     2 nv cosh moHx     ,     2        2V (m2 -2)  LJi   -  (mi -2)  £_* - (m2 - n^ ) 

where     rn 

m. 

cosh HIHH, cosh m H 
LJ 1 

1   + 

1   - 

EtDc 

H 

'4 
dd 

d 
Et 

•■2V     DcDq 
Et_ 
D 

Et 
D 

(V-l) 
(V-2) 

(V-3) 

(V-4) 

(V-5) 

(V-6) 

The hoop stress ( ar^,   ) midway between the supports (at x = 0), which is a ring 
compression or tension (i.e., it nas an equal value in both the inner and outer faces) 
is given by 

Ea    AT 

^c   (m 2-m 2)    Lcosh m H 
1 

m m, 

2   1 
cosh m II 

(V-7) 

while the longitudinal bending moment (Mx ) at x = 0 is calculable from 
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M Xr.   = 
H,D   raAT   (mi -2) (m2 -2) 

c =    d  q 
(m^-n^2) cosh ni2H cosh m H 

(V-8) 

Formulas for the center deflection, the hoop stress at the center, and for the 
longitudinal bending moments at the center and supports of the cylinder are given by 
Equations D-9 through D-12 of Appendix D. 

The hoop stresses and bending moments for both support conditions were com- 
puted for realistic ranges of the pertinent parameters (Hi and H^) and are plotted in 
the form of nondimensionalized design charts in Figures V-l through V-5.  These 
figures show the characteristic reversal of stresses associated with the beam on an 
elastic foundation type of problem. 

Illustrative Examples 

(1)   "Isotropie" cylinder 

As a check on the accuracy of the plotted data the case of an isotropic 
cylinder with simply supported ends, examined by Hoff (Reference 3) will be 
treated (there are no alternative solutions published for the sandwich problem), 
In Hoff's paper, r = 10", C = 1.57", T = 0.0331" and E = 29 x 106 psi.  To achieve 

a comparison with the present paper an equivalent sandwich must be defined.  It 
has been suggested that a suitable criterion is that the radii of gyration of the 
sandwich and the isotropic plate shall be equal.  Also the total cross sectional 
areas must be equal, 

Thus, if t is the thickness of isotropic sheet, t is the thickness of each sand- 
wich face and h' is the effective depth, (i.e. distance between centroid of the faces). 

;3      th.2 
then 2t randTb r 

i.e. t =— and  h' 

2.2t 

T 

Also a core shear stiffness Dqinust be defined.   However, in the case of an 
isotropic plate the shear deformation has negligible influence and a large value 
for Gc may be chosen arbitrarily.   Using the formula Dq = h'Gc and with an 
arbitrary choice of Gc = 1.1 x 106 psi one obtains Da = 2.1 x 104.   The bending 
stiffness is computed as 

hence      H 

Ds = 

EtD 

Et3 

12(1-A ) 

= 96.307 

■/ 

r2D2 

q 

10 and H,  = — 
I     r 

= 0.742 
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-3 
From Figure V-2 at H   = 10    and H = 0.742 the hoop stress at center 

er.   = 0.057 Ea   AT 

In Reference 3 the stress at the center of the cylinder is obtained from the 
expression 

cosh ß cos ß 
a 
$ sinh   ß + cos ß 

E a   AT 

where      ß   - 0.643 ■-=-      '        = 3.51 
^ rt 

The stress, as dervied from the above formula, is then 

a,    = 0.056 Ea   AT 
9 

Thus, there is excellent agreement between the gr-aphical and analytical results. 

(2)   Sandwich Cylinder 

A long sandwich cylinder of 70 inches mean radius is ring stiffened at 
intervals of 48 inches.  The core thickness is 1.0 inch, the face thicknesses 0.030 
inch.  Both the core and the faces are composed of 17-7PH stainless steel, E = 27 x 
106 psi, a   = 6.1 x 10"6   /0F, Gc = 100,000 psi. The cylinder is uniformly heated 

to a temperature 600oF in excess of the ring temperature. Determine the resulting 
hoop stresses and longitudinal bending moments. 

Assume the ring stiffeners are infinitely rigid and that in any particular 
bay the cylinder can be assumed to be fixed-supported at its ends. 

2 2 
D    = 2(1"^/1

) ^     =1070 D    =(h+t)G   =103,000 
c Et(h+t) q     v     '   c * 

Ej=^n\    = 7.35 xl0"3 

d    DcDq 

H -SIBT- 0.961 

From Figure V-3 by interpolation for H . and H. the hoop stress is given by 

CTJj  = 0.060 E a    AT = 5930 psi 

From Figures V-4 and V-5 the bending moments at the center and ends are found to 
be 

At center      M     = 0.0152 Dr a     AT = 401 lb in./in. xc q 

At ends Mv=0.12Dra     AT = 3165 lb in./in. xe q 
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■ 

CHAPTER VI 

INSTABILITY OF HEATED SANDWICH CYLINDERS SUPPORTED 
BY RIGID BULKHEADS 

. 
The data presented in this Chapter permit the determination of the temper- 

ature change which will produce the elastic instability of sandwich cylinders 
supported by rigid bulkheads.  The conditions of analysis are similar to those of 
the preceding Chapter, where the stresses introduced by the temperature change 
were determined.  In determining the stresses only simply supported and fully 
fixed cylinders were considered.   However, in considering the instability of the 
cylinders under hoop stress alone, it is necessary to define three conditions of 
analysis. 

a) Fixed support condition.   In this case the cylinder consists of a single 
bay fully fixed against rotation by a rigid bulkhead at each end. 

b) Simple support condition--single bay.  Again a single bay cylinder is 
considered but the rigid bulkheads no longer restrain the rotation of the ends. 

c)    Simple support condition—many bays.   The cylinder is taken to be 
continuous over many bays, as in a fuselage.  The bulkheads restrain radial dis- 
placement but provide no restriction against rotation. 

In the case of a long multi-bay cylinder (Case c)) the thermal stress dis- 
tribution in each bay corresponds to the fully fixed case.   The fixing moment is 
produced by symmetry at the supports.  Although one possible buckling mode could 
be the fully fixed one, as discussed in Section 2 of Appendix E, where each bay is 
fully fixed due to symmetry at the bulkheads, buckling could also occur in the 

simply supported mode as shown in the 
adjacent sketch.   In this latter case 
each bay behaves as if it were simply 
supported at the bulkheads and since 
this mode will involve less bending of 
the faces than the fully fixed mode 
(see sketch), the simply supported 
mode will predominate. 

1  
PT-  T  

*t 

- ' ~ "~ ^ -A 
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Thus, for a multi-bay cylinder of this type the stress distribution must be 
determined for the fully fixed case and this stress distribution used in the simply 
supported stability analysis to determine the critical temperature      Tcr.   This 
method has been used to develop curves for the determination of the critical 
temperature of a simply supported multi-bay sandwich cylinder.   These curves are 
presented in Figure VI-2, 

Figure VI-1 provides the means for determining the critical temperature for 
a simply supported single bay (case  b)). 

The pertinent parameters are in the same range of values as were employed 
for the design curves of Chapter V. 

t E a  AT 
CT 

Both sets of curves have been terminated at an upper value  = 0.5, 
q 

corresponding to the shear instability failure of the core noted previously.   This 
instability was characterized by the relationship 

2tau 
-—^       = 1.0 

Dq 

At the restrained ends of the cylinder the hoop stress (cy^   ) equals  E oc  A T _ . 
Thus C1 

or 

2t EOC A T 
cr 

= 1 
D 

q 

t ECLAT 
cr 

0.5 
D 

q 

The significance of the present data with respect to published Isotropie 
cylinder solutions is discussed at length in the first of the two following illus- 
trative examples. 

(1)   Isotropie Cylinder 

C —C 

A steel (E = 29 x 10   psi, a  = 6.1 x 10    /0F) Isotropie cylinder of 
radius 15 in., wall thickness 0.022 in., is simply supported at rigid bulkheads at 
intervals of 5 in.   The critical temperature is to be determined for each of two 
cases: 
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(a) Cylinder consists of a single bay only 

(b) Cylinder is continuous over many bays 

As in the illustrative example of Chapter V an equivalent sandwich must be defined. 
Using the relationships derived previously. 

t = T = 0.0110  and h = ^- = 0.0127 

where f is the wall thickness of the Isotropie cylinder.   The shear modulus of the 
equivalent core is arbitrarily selected as 

6 
G    =   1.576 x 10   psi 

c 

Thus D    =   hG   = 2.002 x 10' 
q c 

E t D 
and H 

q 

s -4 
= 10 

and      D   = —ll     =  28.27 
S     2(l-/< 2) 

and       H  = —LS.    =  0.665 
1    r   D 

.-4 
From Figures VI-1 and VI-2 for H   = 10     and H = 0.663 

t EoC AT 
a) 

cr 
D 

= 0.121 for a single bay cylinder 

t Eöf. A T 
b) 

cr 
D 

t EoCAT 
Since 

cr 
D 

0.049        for a multi-bay cylinder 

11/2 

2(1 y/  ) H^ 
(OCAT   )   (-^] and h'= —, then 

cr'   Vh/ 3 

a)     (OCAT   )  /f\=   ^^    xlO2   =5.18 
\   /     1/3   1/1.82 

b)    (ÖCAT    )    %   -    ^~_   xlO2     =2.09 
Cl        '       p  i/1.82 
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For this cylinder 
rl 

25 
15 x 0.022 

- 75 

In Figure 1 of Reference 18, Anderson presents the critical temperature for an 

(2c) / r\ 
isotropic cylinder     —^     =  75.   The corresponding values of  (QL AT   ) I—1 

as taken from the curve, are 5.24 and 2.08 respectively.   The actual critical 
temperatures are 

a) 

b) 

cr 

cr 

0.121 D 
 c 

t EC?' 

0.049 D 
.q 

t EOC 

(2)   Sandwich Cylinder 

= 1245 F 

= 504 F 

A sandwich cylinder of 95 in. mean radius is ring stiffened at intervals 
48 in.   The core thickness is 1.0 in., the face thicknesses 0.030 in.   Both core and 

faces are composed of 17-7 PH stainless steel, E = 30 x 10   psi. Of. = 6.1 x 10 
in./in.0F, G   = 70,000 psi.   The critical temperatures are again to be determined 
for the simply supported single and multi-bay cases. 

Then 

and 

D   = h G    = 7.21 x 10 
q c 

E t D 
 s_ 

.■2D2 

q 

= 10 

and D    = 
s 

and  H  = 

E th 
= 5.246 x 10 

2(1-/   ) 

E t c 

r2D 
= 0.893 

q ■, 

From Figure VI-1 for Hj = 10"z and  Hj = 0.893 the point lies above the 
shear instability boundary.  Thus  the critical temperature for the single bay 
cylinder is given by 

t EOCAT 
cr 

D 
0.5 

and AT 
cr 

0.5 D 
 q 

t EOC 
6566  F 
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From Figure VI-2 for the relevant H^ and H^ for a multi-bay cylinder 

t E Of A T cr       ^ . -   =  0.4 
D 

q 

and A T      =   52530F 
cr 

It can be seen from the above examples that this type of instability is 
unlikely to occur in sandwich cylinders of normal proportions. It is, however, a 
possible mode of failure in cylinders of very large radii and low wall thickness. 

: 
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CHAPTER Vn 

SANDWICH CYLINDER STRESSES DUE TO INTERNAL AND EXTERNAL 
PRESSURE AND RADIAL TEMPEMTURE GRADIENTS 

Design curves presented in this section permit the determination of the 
stresses in long sandwich cylinders subjected to radial temperature gradients   and 
to internal and external pressure.  As in the preceding chapter, the cylinder consists 
of two concentric thin cylinders of identical materials, with radii r  and r. and J o i 
thicknesses t, separated by a honeycomb type core of thickness h = r0-r.   (see 
Figure VII-1).   The cylinder is heated such that each skin has a constant tempera- 
ture change from the stress-free state (T0 and T^, respectively) with a linear vari- 
ation across the core, while the internal and external pressures are p0 and p^. 

The theoretical basis of the present chapter is detailed in Appendix F, where 
the desired stress equations are derived by first considering the separate deforma- 
tions of the three components - - the two skins and the core—under the actions of 
external and interface loading and by then applying the conditions of interface com- 
patibility.  The Isotropie faces are analyzed using plane stress relationships.   The 
core is assumed to possess a modulus of elasticity in the radial direction (Er) and 
a coefficient of thermal expansion in the radial direction equal to that of the skins. 
Consistent with the common properties of honeycomb construction, the core has 
neither stiffness nor a coefficient of thermal expansion in the axial or circumferen- 
tial directions. As shown in the illustrative example, however, homogeneous 
(rather than honeycomb) cores, of the type often employed in sandwich construction, 
can be analyzed with sufficient accuracy by use of the present curves. 

It should be noted that the ends of the cylinder are assumed to be free to move 
in the axial direction and axial stresses due to end closure of the cylinder are not 
included.  The latter, which are approximately equal to li-J  can be superimposed 

4t on the stresses obtained from the present curves.   "End   effect" stresses, if calcu- 
lable, can also be superimposed. 

Due to the imposed load and temperature conditions,axial and longitudinal 
stresses are produced in the faces and radial direct stresses are introduced into the 
core.  There are no direct axial or circumferential stresses in the core due to the 
absence of core stiffness in these directions.  Design curves for the axial and cir- 
cumferential stresses at the outside surface due to external pressure, internal 
pressure, and temperature are presented in Figures VII-1 through VII-6.  The rela- 
ted formulas for stress are shown in each figure; these formulas show that the 
dimensionless stress parameters (e.g.   aQ ^/Ed   (TQ-TJ)) depend only upon 

o 
R = r0/ri and Et/E r-.   For shells of current interest and importance, appropri- 
ate values of R lie between 1.0025 and 1.10 while the ratio Et/E r. takes on values 
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in the range of 0.01 to 50.0.  These ranges were employed In the development of the 
subject design curves. 

Values for the inner surface and radial stresses are easily obtained from the 
corresponding outer surface stresses through simple algebraic operations and are 
therefore not plotted.  The pertinent relationships are: (Equations VII-1 to VII-6 
appear in Figures VII-1 to VII-6). 

a.    Stresses Due to Radial Temperature Gradient 

] 

9 i 
T 

r 
x, 

i 

T 

Bo 

- Rcr 

1 + R 

2R 9 

(VII-7) 

(VII-8) 

(VII-9) 

b.    Stresses Due to Internal Pressure 
Pi 

i 

Pi 
cr 

Piri 
-   cr 

So 

= - Rcr. 
Pi 

1 + R 

2R 

Pi 

00 

(VII-10) 

(VII-11) 

(VII-12) 

Stresses Due to External Pressure 
R Po1'! Po "' 

—X 
P. 

9, t 

R(7 
l3o 

{o 

1 + R 

2R 
cr 

Qi 

(VII-13) 

(VII-14) 

(VII-15) 

.1 

Illustrative Example 

Given a sandwich cylinder with rj = 100.01 in., r0 = 101.03 in.,t = 0.020 in., 
subjected to a radial temperature gradient T0 - T. = 100 0F, and pressures pj = 10 

psi and P0 = 5 psi.   The skin material is aluminum alloy with E = 10.5 x 10   psi and 
/i = 0.3 , while the core is    aluminum honeycomb with Er = 1.5 x 10^ psi.   For 
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skin and core   a   = 12 x 10~6/oF.   Determine the axial and hoop stresses in the 
outer skin and the radial stress in the core, 

R = 1.0102    , Et/Ej,^ = 0.014 

By interpolation on Figures VII-1 to VII-6 the following stresses are found. 

= 0.497 

a   T 

ÖO 

a    T 

X 

-0.711    - 

= -0.492 

Bo1 

EaCVT.) 

Pi 

— —U./i4                                    - 
E a (To-Tj) 

Po 
cr 

-3            ^o * 

Piri 

Po 

xot 

piri 
-U.ü44 X iU 

Pori Pori 

= +0.829 x 10~3 

Thus total hoop stress in outer skin 

T Pi Po 
o-      = -9000 + 24850 - 12300 = 3550 psi 

Bo 

Axial stress in outer skin 
T        Pi       P0 

^        =-8960 - 42 + 20 = -8980 psi 
xo 

Radial stress in core 
T       Pi       Po 

cr^ = +1,8 - 4.9 + 2.5 = -0.5 psi 

Similarly, the inner skin stresses are found to be 

O" = -21,900 psi and cr     = +9010 psi. 
6 i xi 

(19) Yaov       lias analyzed the case of a sandwich cylinder under a radial 

thermal gradient alone, where the core possesses the properties of a homogeneous 
material.  Otherwise, the problem data are identical to those given above.  The 
stresses found by Yao are as follows: 

T 
cr = -0.730 E a  (TQ-TJ) = -9200 psi 

o 
T 

0.685 E a  (T^T.) = 8630 psi 
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o-   T = 1.37 x lO"4 E a  (TQ-TJ) = 1.7 psi 

These values compare closely with the present results of -9000, 9000, and 1.8 psi, 
respectively. 
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APPENDIX A 

BUCKLING OF SANDWICH PANELS UNDER 
1. NONUNIFORM STRESS 

The governing differential equation for the stability of a sandwich plate 
composed of equal thickness Isotropie faces possessing only stiffness in direct 
stress and an Isotropie core which possesses only shear stiffness (see Figure II-l 
in text) can be written in the form (Reference 20) 

Ds    V  w + (1 -fT V ^ 2t ^     -^-  = 0 (A-l) 
q x    ax2 

where       D   is the panel bending stiffness s 
D^. is the core shear stiffness 

ox d y 
4 2        2 

and V    "    V       V 

To solve Equation (A-l), the displacement is first assumed as 

w = W sin  X x (A-2) 

where W is a function of y only and   X   is a parameter involving the buckle 
wavelength in the longitudinal (x) direction.  Using Equation (A-2) in (A-l) and 
introducing a nondimensionalization of the stress distribution through use of 

^ y = , one obtains 
^cr 

4 2   " IV 

X W - 2   X  W    + W 
2 ^cr       2 

-    X 
DsA\2 Ds        n1 

1 + T^—IP W-Tr(/9 w) 
Ds ■ ^      '-q    '    J       "q 

(A-3) 

where the primes on W and ( p   W) indicate derivatives with respect to y.   Note 

that the introduction of p    serves to establish a single parameter (cr    ) which 

characterizes instability in the presence of nonuniformly distributed stresses. 

Finite differences are used to reduce this equation to algebraic form.  With 
9 intervals (see Figure II-l) and second order finite differences one obtains the 
following evaluation of Equation (A-3) at an arbitrary point k 
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Wk-3 + W
k+3 

k-1       k+1 

k-2       k+2 (24 +F A 

(78+fA) + Wk(12+f ^12(il) 

HA 
81 

p      W     -16  p      W 
k-2   k-2 k-1   k-1 

+   PW    (30     4 A    4Dp ) 

k   k 27 27 

where n   = 

16 

D b2 

-cr      D=_9_ 
D '    P    D 

q s 

W W 
= 0 (A-4) 

2t cr 
and   A  = ( X b)' 

The boundary conditions on W are: 

For simple support 

W0 = W9 = 0, W^ = -W1 ,  W_2 = -W2 ,  W10 = -W8 and W11 = - W7 

For fixed support 

W 0 = W9 = 0.  W^ = W^  W_2 = W2 .  W10 = W8 and Wn wr 

The boundary conditions on p must be based on an extrapolation of the stress dis- 
tribution beyond the edges of the plate.   (Although there is no loading outside of the 
edges of the plate (i.e., in actuality /^ = 0 for i < 0 and i > 9) the use of    finite 

differences requires the introduction of fictitious exterior loadings if the stress 
variation in the intervals adjacent to the edges are to be represented properly). 

With use of the boundary conditions, Equation (A-4) can be adapted to each of 
the eight internal points, obtaining thereby  eight simultaneous equations with 
coefficients W^, —Wg.   These equations can be written in matrix form as follows 

[[A]    -   nA[B] W 0 (A-5) 

The matrices I A     and I B I   are presented in Figures A-l and A-2, respectively. 
Both simply supported and fully fixed edges are included. 

The condition for buckling is that the determinant of Equation (A-5) shall 
vanish. A more attractive solution procedure is through matrix iteration, however, 
since direct evaluation of the determinant would lead to a  somewhat complex 
polynomial of eighth order in IT .    To permit matrix iteration, Equation (A-5) is 
rearranged as follows: 

HTrW   =   [*]">]   {W} (A-6) 
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Then, iteration of Equation (A-6) is performed, starting with an initially assumed 
vector (w } , until convergence on the  eigenvector ] W [•      and eigenvalue 

 V^     is achieved. 
nAicr 

For this type of problem it has been found, under certain conditions, that an 
oscillation will occur in the iterative process. The process converges on two dif- 
ferent vectors such that the vectors   fW 1    , /W)   „ are identical and |wl   , , 

t    / P   t   ;p+2 I   Jp+1 

< W> are identical (the subscript p designates the p    iterative cycle).   This 

case occurs when the matrix being iterated upon has two roots equal in magnitude 
but differing in sign.  The relevant eigenvalues are then the two square roots of the 
product of the two apparent eigenvalues, i.e., 

(A-7) 

The above condition occurs in practice when the applied loading is a bending 
moment across the width of the panel.   It is obvious that the same value of moment 
will induce buckling independent of whether the moment acts in either of two oppos- 
ing directions. 

The analysis procedure, as described above, yields a critical stress that 
corresponds to one preselected value of   X , the buckling wavelength parameter. 
As  X is varied the critical stress will vary, reaching a minimum for an as-yet 
unknown value of  X .   To establish this absolute minimum, one can first select a 
range of X 's, and calculate for each the corresponding critical stress parameter, 
n .   Next, employing these results, a polynominal 0 versus   X   relationship is 

established through use of a  curve-fitting technique.   The minimum   FT is then 
obtained through solution of the equation resulting from the condition    d 0 

dx =0• 

The value of the critical buckling stress parameter is a function of 

(1) The panel stiffness (represented by the parameter Dp). 

(2) The buckle wavelength (represented by the parameter X ), and 

(3) The applied load distribution (described by the parameter p   ). 

Wavelength considerations are taken into accound by the sceme described above. Thus, 
it is only necessary to decide which ranges of the parameters D  and   p   are of 

practical interest.  A discussion of this question is given in Chapter II. 

In order to establish effectively convergent results all computations were 
performed for two mesh sizes, the first being the 9-interval solution described here 
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i j 

and the second an 18-interval scheme.  In general, the differences between the 
results for the two schemes were of the order of 0.4%.  In view of the unavoidable 
inaccuracies in the graphical representations which have been made of the computed 
results, the usefulness of any improvement of the results through an extrapolation 
technique is negated. 

i 
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! APPENDIX B 

I PROCEDURE FOR DETERMINING THE STRESSES AND DISPLACEMENTS 
FORA RECTANGULAR SANDWICH PANEL 

I 
I 
I 
I 

The governing small deflection theory differential equation for rectangular 
sandwich panels subjected to normal pressure, uniform inplane loading, and a con- 
stant temperature gradient through its thickness has been developed in Reference 
22.   This equation, derived from elementary equilibrium, compatibility, and stress- 
strain relationships, is applicable to a  sandwich panel having unequal shear stiff- 
nesses but equal bending stiffnesses with respect to the two principal directions. 
For the purpose of developing the design curves described in Chapter III, it was 
deemed desirable to consider only rectangular sandwich plates having Isotropie 
cores and subjected to uniaxial inplane compression and uniform normal pressure. 
In this case, the differential equation reduces to the form 

I (1-^)DS 

~r]     D" 
'x     q 

d w o w 

ox d x dy 

, d w d w 
v     'x   . 2 .  4 

dx   dy' dy 

V x     L 

4 4 4 
(2+(3-^ )77  )_i_w_+ (4+ (3-/x )77   ) d  w        +2 d w 

x         4                              x 2     2 ^ 
dx ' dx dy       dy   - 

2 Da ,2 
4 d w 

D 2 
5 dx 

2p 

D      7] 
S     ' X 

(B-l) 

N 
where V     =—=r—  and N   is the inplane loading in the x - direction (see Figure III-l 

' x     D x 
q 

in Chapter III), p is the uniform normal pressure. 

Since, for the boundary conditions of present interest, an exact solution to 
(B-l) cannot be obtained, a series solution is effected.  The complementary func- 
tion portion of the solution (w ) is taken to have the form 

w 
CO ^ CD 
I     Xcos^Ll- +      Z   Y 

b 
n=l m=l 

cos 
mTTX 

(B-2) 

where X   is a function of x only 
and      Y  is a function of y only. 

S3 
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Substitution of Equation (B-2) into (B-l) yields two differential equations 

d-A'Ps d
6x 

L        *  q 

,2 

77     D 
'x   q 

1|^(^)2
(1+V2.(2+(,M),, d4x 

dx4 

+ 
^D V    0 / x 77.. \    K  / x De x    q 

d2x 

dx 

■(l-a)Da    ,        v
b 

77    D 
L.   ' x   q 

mr 
hl       r}v[    h 

X       = 0 (B-3) 

and, 

(1-^)DR     d Y_    I    il-fM)Ds  ^mTT^    (3 + 7?   )+_2_ 

V   D 
x  q dy 

'2{l-fM)D 

17   D 
' x q 

"I   J d Y 

V d/ 

.     1?   D 
x  q 

(l-/x)D£ 

1 2 

^ x v   a \     a / x      77 y \   n   / x/ 

d2Y 

17 D 
'x q 

= 0 

6 . 4 
mTT \   ,. .       1   / mTr 

dy' 

2D / m7r> 

x       77 x\     a / x       Ds\    a / 

(B-4) 

Equations (B-3) and (B*4) ave ordinary linear differential equations and can 
be readily solved to yield expressions for X   and Y .  Also, the particular integral 
can be obtained, using procedures described in Reference 22, resulting in the 
following complete expression for the deflection 
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Dc 
w =. 

^xD 

00 

q L n(odd) 

K. 
i-4> j i- 4> 

n ( 1   )cosh <p■, mrx + K0 ( 2L) cosh d>n rnrx 
1 2^ ^"T;—       2V o' 2"—^— 

i> 4> 

1-0 
+ K0     K- Icosh 6 n mrx] cos   nT L 

CO 

+ 2 
m(odd) 

K   (<t>A
2-l) coshi-^X+ K (0c

2-l) cosh<i ^H 
4'r4 4a 5     5 T5     a 

,2 ,   ,     mTTy 
+ K6<*6 -1' «^e-ir- cos 

mTTx 
a 

2D S   L 

2' 
x   I - 

b2     2 
— y 

4 
(B-5) 

where qb   ,— ^    are the roots of the cubic auxiliary equations of Equations 

(B-3) and (B-4) and K ,—K   are the six constants required to satisfy the boundary 

conditions.   It can occur for some combinations of dimensions etc. that the auxiliary 
equations have complex roots.   In such cases <£, and ^ „ become complex conjugates 

and ^,. is purely imaginary.   In principle the hyperbolic functions with complex 

arguments should be transformed into the appropriate trigonometric and hyperbolic 
functions.   However, if the complete computation is carried out using a complex 
mode, as is possible in FORTRAN-coded programs, it is not necessary to perform 
this transformation and the present algebraic form can be retained without loss of 
generality. 

For the special case of 17    =0 (no midplane force), equal roots occur in the 
A 

two auxiliary equations, so that 

^ = 4,2 = 1       and04 =  05 = 1 

and the deflection function has the slightly different form 

CD 
w V I  1^        n7rx       •   1       n7rx        1^ 1   n7rx       ,s x   k     n7rx 1 K    —;—  sinh   —:—+ K     cosh—;— + K     cosh if) —:— 

01    b b 01 b 03 3   b 
n(ocicl) 

CD 
..     mTTy    .     mrx     „ .   mTTy ,     xmry 
K.. 1 sinh  + K„. cosh — + K .   cosh tp n—~ a 06 "a 

-)■ 

m foddl 
P 

48Ds 

04 

4 a4        4 b4 

05 

cos 
nwy 

cos mTTx 
ä 

(B-6) 
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The solutions presented in Chapter III can be divided into the following three 
classes of problems: 

(1) Simple support on all edges with a uniform normal pressure and a constant 
temperature difference between thefaces. (^     = 0.) 

A 

(2) As in case (1) but with the addition of uniaxial uniformly distributed 
inplane compression, {rj     1 0). 

X 

(3) Simple support on two opposite edges and fixed support on the other two 
edges and with same loading as case (1). 

The boundary conditions pertinent to these cases are as follows: 

For Cases (1) and (2) 

at   x = ±-?-:w = 0,M=0, V-0 
2 x      '    y 

at   y = ±4-   :w = 0,M   =0rV   =0 

where V   and V   are vertical shear stress resultants in the core 
x y 

For Case (3) 

at   x = ±-| : w = 0, M   = 0, M     =0 
x             xy 

b 
at   y = ± j :w = 0,/3 =0, M -0 

y            xy 

where M     is the twisting moment and /3 y is the rotation of the vertical 

fibers of the core.  Note that although the classic solution for an Isotropie 
plate requires only two boundary conditions, three are required for a sandwich 
panel. 

Substitution of the above conditions into the appropriate expressions for 
moment and shear leads to simultaneous equations from which the constants (K—K, 

or KQ.—Kor) are extracted.  The deflections and moments are then obtained by 

back substitution into the pertinent expressions. 

In cases (1) and (2) the series involved are orthogonal while in case (3) they 
are non-orthogonal.  Thus, in cases (1) and (2), the individual constants can be 
determined directly for any given term of the series, defined by m or n, indepen- 
dently of any other term of the series and the problem is reduced to the simple solu- 
tion of two groups of three simultaneous equations in K-,, K2, K„ and K4) Kg, Kß. 
In the computer program employed for solutions to case (1) and (2) problems, a con- 
vergence criterion is used to select the number of terms in the series. 
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In case (3) the values of K^—Kg for any term of the series depend on all 
other terms.  For a series of n terms, 6n simultaneous equations must be solved. 
Here, since the computational time will be quite long for a series with many terms, 
both convergence and computational efficiency considerations have been used to 
govern the number of terms selected. 

: 

I 
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APPENDIX C 

SANDWICH CYLINDER INSTABILITY UNDER CIRCUMFERENTIALLY 
VARYING AXIAL STRESS 

This problem concerns the prediction of the elastic instability of a circular 
cylinder of sandwich construction subjected to axial stresses that vary in the cir- 
cumferential direction.   The geometric and load conditions for this problem have 
been detailed in Chapter IV (see Figure IV-1). 

The solution approach is essentially the same as that employed for Isotropie 
cylinder analysis in Reference 9.  There, Donnell's partial differential equation has 
reduced to an ordinary differential equation by assuming the  buckled shape to be 
sinusoidal in the axial direction.  Then, the ordinary differential equation was 
reduced to a set of algebraic equations through use of second-order finite differ- 
ences and matrix iteration was applied in determination of the eigenvalues and 
eigenvectors. 

Now, Donnell's equation, modified to apply to a sandwich cylinder, becomes: 
(see Reference 13). 

^8--2(1-^2)(E7i + ^^)-<c-1' 
q '   '      dx* ax 

where x in this case is a non-dimensionalized axial coordinate (the axial coordinate 
divided by the radius). 

The displacement w is assumed to be of the form 

w = W   sin X x (C-2) 

where  W  is a function of the circumferential coordinate (y) only, and X is a 
function of the wavelength in the axial direction. 

Substituting Equation (C-2) into (C-l) and introducing a nondimensionalization 
of the stress distribution similar to that used for the flat panel in Chapter II and 
Appendix A, the differential equation reduces to 
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o o A 9      ^ 
(D    X     + 2 tr   E X   + 2 tr ——-   )  W - (4 D 

s Dc 

2^  X 
X   + 2 tr 

s n 
w ii 

r.  \ 4 „,1V    A „   v 2 „,vi    „   „,vni + 6DX       W      —4DXW      +DW 
s s s 

- 2 tr   cr 
cr 

6 \ 2 4 ^ X TT 
X    (l+-^-)(/3

sW)- X    {2+^-){pW)n 

c ' C 
D r 

0 (C-3) 

2 

where primes indicate derivatives with respect to y only and D   = 

The conditions examined are limited to stress variations which are symmet- 
ric about the vertical (z) axis.  In order to write Equation C-3 in terms of finite 
differences, the circumference of the cylinder is divided into 2n spacings, each of 
length r TiVn . as shown in Figure IV-L. Note that elements 0 and n lie on the axis of 

symmetry.  With use of second order finite differences, C-2 reduces to 

- ( W,      + W,   r \  A   + f W,   A    W,   , 1 A   - f W,   0 + W,     \ An \    k-5       k+5 /     1      I    k-4 +    k+4 /    2    \    k-3       k+3 /    3 

+ (Wk-2+WU+2)   A4-   ( Wk-1 + WU+l) 
A

5 
+ % A6 ] 

-   n  I"  ( V4Wk-4+   ^<+4W
k+4 )  Bl-  (  ^k-3W

k-3 + ^+3W
k+3)B

2 

^Pk-2\-2^k.2\.2 ) B3 -i\.l\-l +^+l
Wk+l)

B4 

+    ^kW
k
B5 

(C-4) 

where 

1       3 

A    = A2(23A 2+ 12A + 1) 

A, =   A3 (4^1) 

1       77-^KA 
A4=   A(68A     +52A     +12A   +T ^^^     ) 

A   = A (126 A 3 + 116 A 2 + 39 A   +i£.+ 8^   KA) 
5 3      3n2    Dc 

SO 
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Ac = (154 A 4 + 150 A 3 + 56 A 2  + 10   A + 1 -f I  KA
(5 A + 2) + ^^1 ) 

b 2^      x ' 4 ' 
n Dc n 

1        nx^ 2       n ^ .^  n^ 
c 

KA/ 2 1        ADcTr2 

B   =-^-  26  A   +12A +-+ ^(^A   +1) 
3      Dc 

V 2 3n2 I 

KA , 2 ADc7r2 

B   = (58 A     + 39 A + 8 +  r—    (39 A   + 16)) 
Dc 3n^ 

K 3 2 2AD7r22 
B, =      (75.    A     4 56   A   ^   15 A    + 2 ■ ^-r— (28 A      + ISA  + 3)) 

5     Dc        v 3n2 / 

2 

ir2 X2 

K   = 2 (l-^2)r2 

(h + t)2 

o-cr 

n = -^ 

Equation (G-4) can be written for each pivotal point, resulting in (n + 1) 
simultaneous equations in the W's for one-half of the cylinder (as noted above, 
symmetry permits the analysis to proceed on the basis of one-half of the cylinder). 
For points affected by the boundaries at the top and bottom of the cylinder, the 
following boundary conditions are applicable: 

W     = W and W       = W (p ^   5) 
-p        p n-p        n+p      v ' 

As in Appendix A, the resulting algebraic equations can be cast in the matrix 
form 

[A]    f    n[B|j       {w}     = 0 (C-5) 

The matrices IA!   and   IBJ   are presented in Figures C-l and C-2, respectively. 
The dominant eigenvalue, -=- , corresponding to the lowest critical stress, can be 

extracted from Equation C-5 in the manner outlined in Appendix A. 

90 

.i 

> i 



I 
I 

ASD-TDR-63-783 

; 

co CM rH 

Ö i Ö Ö 

I-I CM CO "* in co ö 
O o O O 

1 
< < 

1 
< < 

i 
< r 

^^ 1—s ^^ ^^ 
CO ^ in co 

o o 
H 

<! 
i 

CM 

< + 
H 

1 

1 
CM 

1 
CO 

1 

+ in 

< 
CM 

1 

rH 

> 

r 
^^ ^^ ^«^ 
m CO in 

H N CO "* ^ 1 < 
+ 
CO 

^ CM 

< < < <! H CM < 

r 
I 1 < 

1 

^ 1 
i 

CM 

^^ ^ 
m ^ CO 

co <* LO co + 
rH 

< 
+ 
CM 

CO 
o o o < <! < < < 

i 1 < <! CM 
1 

^ 
rH in co in ■* 

co CM 

o o o < < 
I 

< < 
i 

<u < 
+ 

1 

^ i 

o o < 
1 

CM 

< 
co 

< 
i 

CO 

< 
in 

< 
i 

co 
< 

CM rH 

< 
(N 

1 

in 1 
i 

iH (N co <* in ■^ CO CM rH 
o < 

1 
<! < < < 

i 
< < 

1 
< <! 

i 
O 

m I-( CM co <* in co CM rH 

^ CM 
1 

< < 
i 

< < 
i 

<! < < 
1 

o O 

^^ 
CO 

M < 
% + 

CM 

< < in 

< 
co 

< 
in 

< < o O    1 

(M 1 i i 

^-^ m 
•^ < + 

rH 

CO 
CO < + CD m ■* co CM o < N < < < < < < 

<M < i I 1 1 

^^ ^^^ 
in ^^ in 

eg < < < 
•5 + + 

oo + i-i "* 
^ 

< CM < 
i 

< 
co 

< 
i 

CO 

< 
rH 

< o 

*—* sm^ ^^ m ^^ CO 

'-| to < ■* <J 

^ 
in < + co 

< + + 
rH (N iH 

i < i 

CM < 
I 

< < 
I 

o o o 

o 
£ 

to m ^ oo CM rH 

< < 
i 

< < 
i 

< < 
I 

o o o o 

o i-i N co "* 

rH 
I 

Ü 

91 



ASD-TDR-63-783 

O-l T ^- a rc 23 o 
c o o a 

c 
I 

a 
c 

0. 
of c 

0. 

-„ 
T To 

a" a 
T 

CM 
r
r^ CM ' — a 

a a a a a' »-« ■ 
i B 

o o i c i i i CL c Q. E c 
a 

1 
CL 0, t». CM 

1 

T 
m a a 

^, CM 

a 5- a"7. 
a" a a" a 01 a CM WCM C-l 

CM 
1 

1 CM 
1 A i 

1 
C 

1 

- = Cl. C QT c CL q. 
Q. 

1 
Q. Q. 

i Oi 

1 —^ 
a" 

N 
N T T a a .," a un a a n 
n 
i 

a en a M 
~cn 

i 
c 

c 1 c 1 c i Q. 

i 

C ft. c 
CL 

ci. c 
CL CM 

1 

T CM ^     1 
a m T w a a 

T 
1 

a 
-T ■t 1 

«r 
1 1 1 E c 

«J, C 
CL 

B 

1 

CL 

T M 
m a c^ P^ 

a in a «3 
^ •—• m m ) 1ft 

o o o CO 
c 

B 

i 

i 
c 

C 
0- 

1 
c 

0. 

o 

CM CM ^^ a n a t—1 

o o a 
to 

CD 

I 

a 
a 

i 
c 

to 
1 

of 
i 

a 

c 
a. 

o 

c\ TT 
r* a n a a" o a m a m — ~ -; 
in 

0, t». in CL 
E 

M •r •r 
ccT a M a in a 

T „T a -r a T 
0, 0. 

cT 
O. <!. 

\      N t ( i 

n 
n 

N 
a ,_ _"' _'T 

n n a_ m a a a 
M Q. -C^ Q, ~" 

M o. <!. 
1 

Q. 

„ 
-r ^^ 

CO in a 
CM n 

':     ca a a a n a „ 
N w ?i a CM a 

Q. <!. ..N a. N d. N 

CM ' a. Q. 0. 

_ 
*r 

m a n 
a a 

1         f . M O o 
a a sf a 

a" of ^-. 0. (M 0. ^M 

i         CM Cl. Q, Q- 

m T n N „ 

0 
a 

0 
a 

0 

a 
0 

a 
0 

o o o 
a. a 0. «1. Q. 

T 

.L 

I 
w 

92 



[ 
ASD-TDR-63-783 

APPENDIX D 

THERMAL STRESSES AND BENDING MOMENTS IN A HEATED 
SANDWICH CYLINDER SUPPORTED BY RIGID BULKHEADS 

A sandwich cylinder of cross-sectional properties identical to those assigned 
to the sandwich cylinder of Appendix C, but of finite length 2c, is supported at each 
end by a rigid bulkhead. The cylinder may be continuous over several bays, so that 
each bay is effectively built-in at the rigid bulkheads due to symmetry, or one bay 
alone may be considered with simply supported ends. The cylinder is uniformly 
heated so that a temperature change from the stress-free state (A T) is sustained, 
while the bulkheads are unheated. 

The subject problem is similar to that of a beam on an elastic foundation. 
Using this concept, the basic differential equation for the radial deflection (w) is 

d4w     2tE   d2w 2tE ,                 A™        « 
    +   (w + ra    AT)    =0 
dJ^       r2D dx2 r2DQ q s 

(D-l) 

where   a   is the coefficient of thermal expansion. A general solution for this 
equation is 

w = C, cosh m. 
/ Et 

Vr2D 

I/2 

x + C   cosh m / 
Et 

r2D 

1/2 
x  - raAT       (D-2) 

where m, and m , the roots of the auxiliary equation, are given (in nondimensional 
form) by 

ni 

with H 

1 + VI - 

EtDc 

and,      m 
d  J 

Et 

1 - V1 - 
'd-1 

(D-3) 

r2 D 2 DcDq 

The roots m, and n^ may be real (H^ >  2) or complex (H^ < 2).  In the 

latter case, the hyperbolic functions of Equation (D-2) should be modified as follows: 

cosh (a + i b) = cosh a cosh b + i sinh a sin  b 

but, as in Appendix B, provided all computations are carried out in a complex mode, 
it is not necessary to transform the hyperbolic functions. 
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As noted above, two support conditions - simple and fixed support—are of 
present interest.  Consider first the simple support condition, where the boundary 
conditions are 

at   x = ± c,   w = 0   and   M   = -D 
x s 

d w     2tE 
r fl_ (w + r a  AT) 
dx2     r2D 

= 0 

Using these conditions, the constants Cj and C2 are determined and the deflected 
form becomes 

r  a A T 
w = 

(m^-m^)     L 

cosh m^H „      cosh m„H 
/     2 ov !  x      /     2 o. 2  x   /     2       2S (m^ -2) —; T, (m, -2) ; — -(m„ -m,  ) v   2     'coshmH,      v   1     ' cosh m^H,   v   2       l' 

11 2  1 

where       H   = I ——        —    and    H, 
x      \Dqy       r 1 D 

(D-4) 

(D-4a) 

The formula for hoop stress is 

w + r a A T 
$ 

Thus, the hoop stress at the center (at x = 0) is given by 

E.a AT 

<f)       ,     2      2, r c    {ml -m2 ) 

m„2-2 m 2-2 

cosh m,H.        cosh m H, 
11 2  U 

(D-5) 

(D-5a) 

Also, the expression for longitudinal bending moment is 

2tE 

,2 
M D 

,2 
d w 

dxz r2D, 
(w + r a A T ) (D-6) 

Hence, the maximum bending moment in the cylinder (at the center, x = 0) is 
(m 2_2)(m 2_2) 

M     = H , D   r a A T 
(m^-m^) cosh m H        cosh m II 

-1-1 <-      1 

(D-6a) 

With built-in ends, the boundary conditions are 
, dw     Qv 

at x = i c,  w = 0   and -r-  - ^r 
dx      Dq 

where Qx is the transverse shear force and is given by 

Q   = -D 
x s 

,3 
d w 
dx3 

2tE      dw 

r2Dn     
d* 

(D-7) 
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so that the second boundary condition becomes 

iw °s   d_w 
dx    (1"2V + Dq   dx3 = 0 (D-8) 

Use of the above boundary conditions with Equation (D-2) and its derivatives 
yields the constants C^ and Cg for built-in support conditions and leads to the 
following expression for the radial displacement 

w = r a AT 
[l-ll ,(2-m„ )1 sinli m„H, cosh m.H   - [l-H ,(2-111, )1 — slnh mil, cosh m„H 
I     d        2   J 2 1 1  x     L      d        1  J mo 11 2  x 

- 1 
[l-ll ,(2-mn

2)l sinli mJl, cosh m,H, - [l-H ,(2-m1
2)l ÜH slnh m,H, cosh m„H, 

LL     d        2   J 2  1 1  1     L      d        1  J 1112 11 2  1 

The hoop stress at the center is now 

r r,  ,.  ,,       2,1    , ,        ,.      r,  ,,   ,„       2,i     1 slnh m.H, ri-Hd(2-m2 )j sinli m^ -[1-^(2^ )J n^ 11 

$„ [l-H ,(2'-m0
2)l slnh mnH, cosh m.H, - [l-H 1(2-m1

2)l Uli sinli m,Il, cosh mnH, c L L     d       2  J 2 1 1 I    L     d       1 J m2 11 2 1. 

(D-9) 

(D-10) 

while the bending moment at the center is given by 

[l-Ild(2-m2 )J (m1 -2) sinli m,,^ - [l-HjCZ-nij )] (m,, -2)—slnhm^ 
Mv   -• - H,D   r aAT xc d  q 

[l-H,(2-mn
2)l slnh m0ll, cosh m.H, - [l-H, (2-m, jl-^Lsinli m.H, cosh ni„ll, 

L     d        2   J 21 llLdlJmQ 11 21 

(D-ll) 

Of additional interest is the bending moment at the built-in ends 

x d  q 

'1    , 
r[l-ll(1(2-m2 )1  (nij -2) sinh n^Ilj cosh m^i^ - ri-lld(2-m1 )1 (m2 -2)1^ sinh m^lj cosh ni^lj 

'l-Ild(2-m 2)1 sinh m II  cosh m.II. - [l-H ,(2-m 2)1 Jlli sinh m II   cosh m Ü! 

(D-12) 
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APPENDIX E 

BUCKLING OF A SANDWICH CYLINDER UNDER THERMALLY 
INDUCED HOOP STRESS 

1,       GOVERNING EQUATIONS 

Appendix D treats the problem of determining the hoop stresses in a uniformly 
heated sandwich cylinder supported at either end by rigid unheated bulkheads.   This 
Appendix develops a method for determining the cylinder temperature change, ATcr, 
for which the cylinder will buckle in consequence of the induced hoop thermal 
stresses,   Thus, it is assumed that the hoop thermal stresses will have already been 
determined by use of the technique of Appendix D. 

For the present case, Donnell's equation, modified to apply to sandwich con- 
struction, takes the form (Reference 13). 

DsV"w+2.(1-^V2J   H|-^rV4ay^jj-hO (E-l, 

The general solution for hoop stress, cry, as derived in Appendix D, is of the 
form 

a    = AcoshnLH   + B cosh m„H (E-2) 
y 1 x 2 x v 

As described in Chapter VI, three separate cases must be considered: 

(a) Fixed support condition.  In this case the cylinder consists only of one bay 
fully fixed against rotation at each rigid bulkhead. 

(b) Simple support condition - one bay.  Again the cylinder consists only of 
one bay but the ends are no longer restrained against rotation at the 
bulkheads. 

(c) Simple support condition - many bays.   The cylinder is taken to be con- 
tinuous over many bays as in a fuselage.  The bulkheads provide no 
restraint against rotation but restrain completely all radial displacement. 

In Chapter VI it was demonstrated that case (c) is derived from a combination 
of fixed support thermal stresses and a simply supported buckling mode.  Thus no 
theoretical treatment of this case is necessary in this Appendix and only cases (a) 
and (b) are discussed here. 
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2.       FIXED SUPPORT CONDITION 

To analyze for fixed support conditions, the origin of coordinates is first 
shifted from the center of the cylinder to the left bulkhead (see sketch below).  The 
hoop stress equation then takes the form 

o-    = E a AT [ A cosh m1 (Hx-Hj ) + B cosh m^Hj.-!^ )J (E-2a) 

Also, since the hyperbolic functions are not convenient for use in Equation (E-l), a 
transformation to an infinite cosine series is accomplished with Fourier analysis 
techniques, resulting in 

CO 
c  = E a A T       I cos 

p-0 Op 
2c 

where     8      is the Kronecker delta    / % a =0, i ^ j 
Op li 

ij = 1, i = j 

and      C   = 
P 

2 Am.. Hi  sin m^Hi 2B m H^   sinh m H, 

.^j   Mn^HD2 ^1   + (m2Hp2 

(E-3) 

(E-4) 

for p even, and 

C    = 0 
P 

for p odd. 

2c 

(E-4a) 

To achieve a solution for Equation (E-l) with use of Equation (E-3), Galerkin's 
method is employed.   Thus, a deflection function which satisfies both the static and 
kinematic boundary conditions is selected.   This function, which was employed by 
Anderson in Reference 28 is 
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.   Try  V 
=   sin —i-   i-j w =  sin 

m=l 
m 

TTX TT X 
cos (m-1)— - cos(m+l) — (E-5) 

TT r 
where X = is the half wavelength of the buckled shape in the circumferential 

direction and the Coefficients am range from m=l through m=k (the function for w is3 

of course,an infinite series with k = 00 but is truncated at a finite value of k for 
numerical analysis).  The unknown coefficients am are determined from the 
condition 

■ 

2c 

w  ■   Q (w) dxdy =  0 (E-6) 

where Q (w) is the differential equation (E-l) with a   from Equation (E-3). 

After integration of Equation (E-6) and rearrangement of terms one obtains 

m 
U   (1 + 8,   ) + U       '-a    -U    (1-8,   )(1- S0   )-a    „U   +2 

mx        1m        m+2        m-2  m x        lmM        2m      m+2   m 

nZ a, 
i = 1 

C     . 0-2C        +C     .- C   ^ 0 + 2C    ., -C 
i   m-i-2        m-1      m-i+2     m+i-2 m+1      m+i+2y ^2 

4 Jk. J [ (1+ /32)(m-i-2)2 + 2 (i+l)(m-i-2) + (i+1)2 ]  Cm . 
H121 

[(I + /3 2)(m-i)2 + 2i(m-i) + (i2 + 1) 
m-i 

2 
[(1 + /32)(m-i+2)2 + 2(i-l)(m-i+2) + (i-1) 

-   [(I + /32)(m+i-2)2 - 2(i-l)(m+i-2) + (i-1)21 

m-i+2 

m+i-2 

+ 2 [(1 + /52)(m+i)2 - 2i(m+l) + (i2 + 1) ] Cm+1 

|"(1 + ^2)(m+i+2)2 - 2(i+l)(m+i+2) + (i+1)2 

^+1+2 
= 0 

(E-7) 
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where U     =-T— 
m    ß2 

_       Ck 

[(m-l)^^2] 
2   32 H, 4 

+ ——i 

^H 

(m-l)4 

^^ 

d   [(m-1) 

and   n 

2V] 
c2t C 

o.8Hl2    (m-1)4 

7r2[(m-l)2+)9^ 

ocr 

D. 

or 

Equation (E-7) can now be written for m = 1, 2, 3, — k, which yields k 
simultaneous equations.   The condition of a vanishing determinant leads to the criti- 
cal value of the buckling stress parameter U .  It is, however, more convenient as 
in Appendix A, to present the problem in matrix form and apply an iterative tech- 
nique for the determination of Fl   for a number of values of the wavelength para- 
meter ß . When the simultaneous equations are written in matrix form, one obtains 

[u]{a}+      n[l]{a}=0 

It is found that the matrix [ U J L Z J ^as a checkerboard pattern, i.e., 
alternate terms are zero. This matrix can be rearranged to form two decoupled 
systems, corresponding to symmetric and antisymmetric failure modes, which can 
be treated separately. The symmetric mode leads, in all cases, to the lower criti- 
cal stress. From the eigen value FI of the system the value of Co^ = CL E a A T 
can be computed leading to the critical temperature rise Al^r 

cr or 

Unfortunately, this approach demonstrated such poor convergence that it was 
not possible to determine the critical temperature even with m = 30. As noted in 
Chapter VI, however, a more critical mode of buckling than the present case can be 
defined (Case (c)) when the intent is to analyze a long cylinder supported over many 
rings. 

3.       SIMPLY SUPPORTED EDGES - ONE BAY 

As in the case of built-in edges the expression for the hoop stress in the 
cylinder is transformed into the Fourier cosine series (Eq. E-3), where the coef- 
ficients Cp are given by Eq. E-4. 

The analysis follows that of Hoff (Reference 14), suitably modified to include 
shear deformation terms.  Hence, the displacement function is taken to have the 
form 

w  =  cos ny 2 a    cos 
m 

mrr K 

X 
(E-9) 
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Substitution of Equations (E-3) and (E-9) into (E-l) yields an expression in- 
volving double series.   These series can be manipulated, as in Reference 14, to 
generate a set of linear simultaneous equations (see Equations 28 of Reference 14). 

The general form of one such equation is the counterpart of Equation (E-7) of the 
fixed support case and the matrix form of these equations has the same appearance 
as Equation (E-8).   The expression for Um given by Hoff, however, must now include 
the shear deformation terms, i.e. 

Um 

\2 on   4 O    / \2r DS -    ' ^ - - >  4 m7r\       21 , „      2, / r x   r -- 
— +nJ   ^-MT -^Ux)-2}]!^) (E-10) 

In the present case the matrix associated with this term [ [uj ) is a diagonal 
matrix and is therefore easily inverted.  Using the matrix iterative techniques of 
Appendix A the eigenvalues of the system for a range of values of the wavelength 
parameter are computed and the minimum determined using a standard curve 
fitting procedure. 

The eigenvalue thus determined, R in Hoff's notation, corresponds to the 
critical thermal strain a A Tcr. 
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APPENDIX F 

SANDWICH CYLINDER STRESSES DUE TO INTERNAL AND EXTERNAL 
PRESSURE AND RADIAL TEMPERATURE GRADIENTS 

The cylinder treated in this section is of the identical cross-section as those 
examined in Appendixes C, D, and E and is infinitely long.  Now, however, a dis- 
tinction must be made between the radii of the inner and outer skins.   The inner 
radius is designated as rj and the outer radius as r0.   The inner and outer skins 
are at constant temperatures T^ and T0, respectively (AT = T0-T^), and both 
internal and external pressures may be present.  Also, the core is now assumed 
to have a modulus of elasticity in the radial direction (Er) and zero stiffness in the 
circumferential and axial directions. 

In this approach to the development of relationships for the stresses in the 
faces and core, each cylindrical component (the inner and outer faces and the core) 
is examined separately and finally combined using conditions of compatibility at the 
interfaces.  Axial stresses are transmitted from one cylinder to the next only at 
the ends of the cylinders; such "end effect" stress systems are not considered in 
this development. 

Sketched below is a representation of the forces acting on the skins and on 
the core.   The unknown interface stress between the inner skin and the core is 
designated asq^.  At any radius r, the radial stress within the core must be 

q = 
q.r. 

and it follows that q0 = Qi ~ = — 
r0 

0 

where R =  , 

(F-l) 

(F-la) 

(F-2) 

Inner Face Core Outer Face 
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while the radial strain due to this stress is 
q.r. 

i i 

c ~ E^r 
(F-3) 

By integration from q to r0, one obtains the radial growth (i.e., the change in 
radial displacement between the inner and outer faces) due to this strain as follows: 

A w. iÜL=!ÜL   ln(R) (F-4) 
Er       E r r 

The radial growth due to thermal strains is simply 

Aw,,   = a 
T   + T- io     1i 

(ro-ri) (F-4a) 

Considering now the total radial growth of the core (wc) as being composed 
of both the growth due to thermal expansion and A wc , one obtains 

A Wc = [-2(
To+TiHro-ri) 

Vi 
ET 

ln(RJ| 
-r J 

Radial displacement of the inner cylinder (wj) is given by 

(Qi + Pi)^ o-  . 
a   Ti + —-  -   H- 

Et E 

(F-5) 

(F-7) 

7 

where  ^x. is the axial stress in the inner cylinder, while the strain in the axial 

direction is 

f *i 
x- =     a  Ti + "^    " xi      •■        *       E 

:<: (qi+Pi)ri 

'  "IT (F-7) 
.1 

•? 

Similarly, for the outer cylinder, the radial displacement and axial strain are 

w   = r       a T - o      o   L       o 

cr. 
o   _   (VPOKD 

Et 
(F-8) 

and 

xo       L        "        E Et       J 
(F-9) 

where   cr    the the axial stress on the outer cylinder. 
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I 

From equilibrium, it is found that 
cr. 

"o ro 

H 
R 

(F-10) 

and, from compatibility 

w. +   Aw„ = w 
1 C o 

(F-ll) 

(F-12) 

Use of conditiais (F-l) and (F-10) to (F-12) together with Equations (F-3) and 
(F-5) to (F-9) leads to the following two simultaneous equations in <J x. and q. 

jl+R) crXi 2/ir.Rq. /xr.R 
    -        — -1 = a R AT + —— (p.+ p R) 

Et Et       1     0 E 
(F-13) 

2^   cr 

E 

, r.(l+R+K)q^      a A        r 2 

>     +    = ^(1+R)AT —i-  (p. + p R*) 

Et * Et     '      0 

(F-14) 

Thus 

0" 

ECl AT R ((1+R)(1+ M )+ K) - M R(1-R-K)£LJ  +/iR2(l-R+K)üi 

(1+R)(1+R+K) - 4/x  R 

Ea ATJ^ ((1+R)2 + 4^ R) - p.(l+R-2 fi 2R) -p0R2 (l+R-2/i2) 
q. = 2ri m  

(1+R)(1+R+K) - 4/x     R 

(F-15) 

(F-]6) 

Et 
where        K = -=—       In R 

E v. 
r  i 

Using Equations (F-15) and (F-16), the equations for hoop and axial stress of 
Chapter VII are obtained by back substitution into the appropriate equations. 
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